ada: An R Package for Stochastic Boosting

نویسندگان

  • Mark Culp
  • Kjell Johnson
  • George Michailidis
چکیده

Boosting is an iterative algorithm that combines simple classification rules with ‘mediocre’ performance in terms of misclassification error rate to produce a highly accurate classification rule. Stochastic gradient boosting provides an enhancement which incorporates a random mechanism at each boosting step showing an improvement in performance and speed in generating the ensemble. ada is an R package that implements three popular variants of boosting, together with a version of stochastic gradient boosting. In addition, useful plots for data analytic purposes are provided along with an extension to the multi-class case. The algorithms are illustrated with synthetic and real data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ModelMap: an R Package for Model Creation and Map Production

The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) enables user-friendly modeling, validation, and mapping over large geographic areas though a single R function or GUI interface. It constructs predictive models of continuous or discrete responses using Random Forests or Stochastic Gradient Boosting. It validates these models with an independent test set, cross-validatio...

متن کامل

Benjamin Hofner , Andreas Mayr , Nikolay Robinzonov , Matthias Schmid Model - based Boosting in R : A Hands - on Tutorial Using the R Package mboost

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

A Bayesian boosting theorem

We re®ne the ®rst theorem of (R. bounding the error of the ADA DABOOST OOST boosting algorithm, to integrate Bayes risk. This suggests the signi®cant time savings could be obtained on some domains without damaging the solution. An applicative example is given in the ®eld of feature selection.

متن کامل

Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost. pdfsubject

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006